Josef Haddad Essay on Uncertainty Estimation

Introduction

In this essay, I will review and compare three papers that present approaches for uncertainty
estimation with deep networks. Uncertainty estimation with deep networks is worth studying
because of the wide variety of tasks that deep networks have shown to be capable of helping
with. Taking uncertainty into consideration is important to prevent having overconfident
predictors. A model that doesn’t express uncertainty in its predictions can be dangerous,
and a model can be uncertain in scenarios that it hasn’t been trained on (out-of-distribution
examples). It could, for example, be a self-driving drone that is flying in never before seen
conditions. With a model that can express uncertainty, one can avoid drone crashes by
alerting the pilot on the ground to take over the steering when it is uncertain about how to
behave, instead of just making the action that it is most certain about.

Uncertainty estimation in autonomous models will not only benefit drone flying but self-
driving vehicles overall. It will also benefit the area of medicine with predictions about health
conditions, which can be used to alert a professional when the model is uncertain about a
decision. Being able to incorporate such models would save time in the medical field, and
potentially save lives.

Previous work done in [MacKay, 1992] includes Bayesian approaches with neural networks
where the maximum number of parameters used in their neural network models is 25. This
is previous work that the three selected papers mention directly or indirectly. The papers I
will summarize have their ways of incorporating uncertainty with deep networks, which are
presented in the method section.

Method

The first paper "Weight Uncertainty in Neural Networks” [Blundell et al., 2015], introduce
uncertainty to the weights of deep networks as a way to combat overfitting and as a way of
incorporating uncertainty in the data. They further present experiments for classification,
regression and on-line learning in reinforcement problems. Each weight in their networks is
assigned a Gaussian distribution with individual mean p and variable p, which is a parameter
for calculating the standard deviation o of the weights. To train the parameters 6 (u and
p) that each weight w has, they propose "Bayes by Backprop”. |[Blundell et al., 2015| use
variational learning of #. Their loss function is, therefore, the Kullback-Leibler divergence
from P(w|D) to q(w|f), where D is our data, and q denotes a probability density. They
use an approximate form of this loss. They use Monte Carlo samplings of w (drawn from
Gaussian(pu, p)) to get an estimate of the gradients to minimize the loss function in an SGD
fashion on every p and p, which is necessary due to how computationally inefficient the
model training would be if the exact gradient was used. So to update the gradients, they
sample weights, calculate the gradients with respect to every p and p in the network (for
each weight), and then repeat by sampling new weights w. For prediction, they sample an
ensemble of networks which together express the uncertainty of the prediction.

The second paper, "Simple and Scalable Predictive Uncertainty Estimation using Deep
Ensembles” [Lakshminarayanan et al., 2017], also handle predictive uncertainty for classifica-

Josef Haddad Essay on Uncertainty Estimation

tion and regression problems, but furthermore address the problem of difficulties in training
Bayesian models, both from a practical and computational perspective. Lakshminarayanan
et al. Train an ensemble of non-Bayesian networks that has output nodes corresponding
to mean p and variance o respectively. The models in the ensemble (typically around the
default quantity of 5 models) are trained separately with the negative log-likelihood as the
loss function. Each output of the model is weighted equally to form a Gaussian when using
the ensemble for prediction. I will refer to their method as the "Deep Ensembles” approach
in this essay.

The third paper addressed in this review is A Simple Baseline for Bayesian Uncertainty
in Deep Learning” [Maddox et al., 2019|, where the authors, just like in the first paper
[Blundell et al., 2015], approximate posterior distributions of the weights to handle uncer-
tainty with deep networks. [Maddox et al., 2019] modify the training algorithm Stochastic
Weight Averaging (SWA), and call their approach SWA-Gaussian (SWAG). Standard SWA
in deep learning averages the final model weights over the weights that it has had dur-
ing training. This average of each weight is used as the mean for the distribution of the
weights in SWAG. SWAG additionally incorporates the seen weights to form a covariance
matrix over the weights. This covariance matrix consists of a diagonal covariance matrix
and a non-diagonal covariance matrix of the weights but with a lower rank which decreases
computation and storage requirements. When applying their approach, one ideally starts
from a pre-trained model and apply the SWAG approach to that. For prediction, Bayesian
model averaging is performed by sampling multiple networks from our weight distribution.
[Maddox et al., 2019] use 30 sampled networks in their experiments for prediction.

Comparison

These three presented approaches yield different network characteristics. Bayes by Backprop
and SWAG are similar in the way that they model distributions of the weight while the
Deep Ensembles approach in [Lakshminarayanan et al., 2017| is non-Bayesian and is more
similar to standard feedforward networks with constant weights but has output nodes which
correspond to the mean and variance. The computational complexity of these models also
vary but training time can, of course, be adjusted by stopping the training earlier. Bayes by
Backprop requires doing Monte Carlo sampling of the whole network each time the gradient
is calculated which is inefficient compared to the other methods. The efficiency of using
the Deep Ensembles approach depends on how many networks one uses in the ensemble
but with 5 networks (recommended default value) in the ensemble, it shouldn’t be too bad.
[Lakshminarayanan et al., 2017] furthermore use networks that are more similar to the more
conventional standard feedforward networks making their method simpler to understand and
implement.

Another aspect of complexity is the required memory. Introducing independent Gaussian
distributions to every weight in the network doubles the number of parameters, and since we
sample complete networks, we need additional memory for a whole new network making the
requirement 3 times the number of weights if we sample the networks sequentially. This is the
case for the Bayes by Backprop approach. SWAG at least doubles the number of weights but

Josef Haddad Essay on Uncertainty Estimation

also samples complete networks for prediction. SWAG further more stores a non-diagonal
covariance matrix of rank K (K is a hyperparameter in the model and an integer larger
than one), which requires memory of at least K times the number of weights in the model.
[Maddox et al., 2019] use rank K = 20 in their experiments with SWAG, which means that
the required memory is at least 20 times the number of weights when using the default
setting. The required memory for the Deep Ensembles approach depends on the number of
networks in the ensemble but with the recommended number of networks (five), the memory
required becomes five times the number of weights of one network in the ensemble, and we
do not have to sample new networks for training or prediction.

The experiments in [Blundell et al., 2015] and |Lakshminarayanan et al., 2017| showed
that the Deep Ensemble performs better than the Bayes by Backprop approach when an en-
semble of five networks is used for each network on the MNIST-dataset. This holds for both
the use of a scale mixture Gaussian prior and a standard Gaussian prior of the model trained
using Bayes by Backprop. |[Lakshminarayanan et al., 2017] achieved a classification error of
~ 1.14% while [Blundell et al., 2015] achieved an error of 1.32% when using a scale mixture
Gaussian as prior. The difference isn’t very large and the two papers used different network ar-
chitectures which makes the comparison unfair. [Lakshminarayanan et al., 2017] used 2 hid-
den layers with 1200-nodes each for their best performing model while [Blundell et al., 2015]
used 3 hidden layers with 200-nodes each. [Maddox et al., 2019| did not test the SWAG
approach for classification on MNIST-data but SWAG performs on par with models from
previous work on the CIFAR-10 dataset (using the same network architecture) with the ad-
dition of being one of the better-calibrated models, at least shown on the CIFAR-100 dataset.

Considering the complexity of the different approaches, Deep Ensembles is the one which
the broader deep learning audience would be able to understand and make use of. The
training for that approach is very similar to what many learn in introductory deep learning
courses or books. The major differences are that a softplus function is used for the output
of the variance and the loss function used is the negative log-likelihood which some may be
a bit unfamiliar with. Introducing posterior distributions to the weights of the networks is
new to many and the approaches for training these that I have covered are more complex
and harder to work with overall.

These reviewed approaches for incorporating uncertainty requires more resources in terms
of both memory and computing power compared to standard neural networks. This makes
them unsuitable for mobile devices, such as remote sensors on drones, where the components
often are limited in terms of power consumption and weight. However, these approaches may
be suitable if we prune the networks first and if the networks already are trained, so that we
only have to handle prediction on those devices. This is possible for the model trained using
Bayes by Backprop. There was only a minor decrease in performance when pruning a 2.4m
weight model by 98% (to 48k weights) when using the Signal-to-Noise ratio as a metric for
pruning. The error rate only increased to 1.39% for a model with 1.24% before pruning. If
the prediction is fast enough for a self manoeuvring drone, then this would be very promising
for quick decision making. It would be interesting to also try pruning the networks used in
the other papers to see if the predictive power holds.

Josef Haddad Essay on Uncertainty Estimation

References

[Blundell et al., 2015| Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015).
Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424.

[Lakshminarayanan et al., 2017| Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances
in neural information processing systems, pages 6402-6413.

[MacKay, 1992] MacKay, D. J. (1992). Bayesian interpolation. Neural computation, 4(3):415—
447.

[Maddox et al., 2019] Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson,
A. G. (2019). A simple baseline for bayesian uncertainty in deep learning. In Advances in
Neural Information Processing Systems, pages 13153-13164.

